

Avril 2019

Pierre ROUAULT

Les réacteurs de recherche et d'expérimentation

Sur le site de Cadarache le CEA a lancé la construction d'un important projet de réacteur de recherche : le réacteur Jules Horowitz (RJH). La presse en parle relativement peu. Pourtant ce réacteur est appelé à jouer un rôle de premier plan dans le développement futur de l'industrie nucléaire et la fourniture de radioéléments pour les hôpitaux, en particulier le technétium 99m très utilisé pour les diagnostics médicaux. (1)

Avant de voir en quoi consiste ce projet de réacteur, il nous a semblé utile d'aborder auparavant le sujet élargi des réacteurs de recherche et d'expérimentation.

Quelques généralités

Bien que son principe physique soit fondamentalement le même, à la différence des réacteurs de puissance utilisés pour la production d'électricité ou la propulsion nucléaire, le but d'un réacteur de recherche n'est pas de fournir de l'énergie. Il sert principalement de source de neutrons pour la recherche et le développement de la filière électronucléaire. Il va notamment permettre l'étude du comportement des matériaux et des combustibles nucléaires face à des sollicitations représentatives du fonctionnement en vraie grandeur d'un réacteur industriel. Il peut servir aussi à la recherche fondamentale, à la formation des personnels de l'industrie électronucléaire, à la médecine nucléaire pour la production de radio-isotopes médicaux, ou encore à l'enseignement. C'est à Enrico Fermi que l'on doit le premier réacteur nucléaire de recherche : la Chicago Pile-1 en 1942. Cette pile atomique est de fait le premier réacteur nucléaire créé par l'homme, démontrant la possibilité de réaliser une réaction en chaine auto-entretenue et contrôlée. Aujourd'hui, plus de 200 réacteurs nucléaires de recherche sont en fonctionnement dans plus de 50 pays. La base de données de l'AIEA (Agence Internationale de l'Energie Atomique) recense 840 réacteurs de recherche dont la plupart sont maintenant arrêtés. Aujourd'hui, sur ce nombre important, environ 240 sont opérationnels (en opération ou provisoirement arrêtés). Parmi ces derniers, seuls une cinquantaine ont une puissance significative (supérieure à 5 mégawatts). (2)

Le classement des réacteurs de recherche

La fission est à la fois source de neutrons et source de chaleur. La récupération de cette chaleur constitue l'unique objectif des réacteurs de puissance où elle est ensuite transformée

en électricité. L'utilisation des neutrons disponibles constitue l'objectif majeur des réacteurs de recherche et l'échauffement du combustible est considéré comme une contrainte qui limite parfois l'obtention de flux intenses de neutrons.

Selon leur puissance nominale et leur conception, les réacteurs de recherche peuvent délivrer des flux de 1.10¹⁰ à 1.10¹⁵ neutrons/cm².s, voire plus. Le classement habituel ciaprès, par type d'utilisation, correspond à des flux de neutrons décroissants. Cf Ref 1

- 1- Les réacteurs à faisceaux sortis dédiés à la recherche fondamentale, comme le RHF (Réacteur à Haut Flux) de 58 MW de l'Institut Laüe-Langevin à Grenoble,
- 2- Les réacteurs d'irradiations et d'essais pour l'étude des matériaux et des combustibles nucléaires, tels que le réacteur Osiris de 70 MW du CEA à Saclay mis à l'arrêt en 2015.
- 3- Les réacteurs d'essais de sûreté pour l'étude des situations accidentelles des centrales nucléaires tels que le réacteur Cabri de 25 MW du CEA à Cadarache,
- 4- Les assemblages critiques comme Eole (100 W) à Cadarache pour les études et mesures de physique des cœurs et la validation des modèles et des codes de calculs neutroniques,
- 5- Les réacteurs universitaires pour l'enseignement ou la formation des personnels de conduite des centrales nucléaires tels que le réacteur Ulysse de l'INSTN à Saclay arrêté en 2007.

La puissance des réacteurs des 3 premières catégories peut dépasser 100 MW tandis que celle des 2 dernières catégories est faible, rarement supérieure à quelques kW. Des missions secondaires dont la plus connue est la production de radio-isotopes pour la médecine, sont généralement prises en charge par les grands réacteurs des 2 premières catégories.

La conception des réacteurs de recherche

Les principes de conception d'un cœur de réacteur de recherche sont les mêmes que celles d'un réacteur de puissance. Mais les finalités poursuivies ne sont pas les mêmes. Aussi la conception d'un réacteur de recherche est généralement très éloignée de celle d'un réacteur de puissance.

Les principes de conception :

Le ``cœur " d'un réacteur se compose :

- d'un combustible nucléaire généralement à base d'uranium 235 (isotope fissile) contenu dans une gaine étanche,
- d'un modérateur qui ralentit les neutrons rapides de forte énergie (E = 2 Mev) issus de la fission (en effet ce sont les neutrons lents de faible énergie (E \leq 0,025 ev) qui ont la plus forte probabilité de produire des fissions),

- d'un réflecteur qui réduit les fuites de neutrons hors du cœur en les renvoyant dans le cœur,
- d'une source de neutrons pour assurer le démarrage,
- enfin de barres de contrôle constituées de matériaux absorbant les neutrons et dont la position dans le cœur est réglée en permanence pour ajuster et contrôler la réaction en chaîne.

L'eau lourde (D2O) est le meilleur modérateur devant, par ordre décroissant, le graphite, le béryllium et l'eau légère (H2O). Après ralentissement, les neutrons devenus lents ($v \le 2.200$ m/s) sont le plus souvent appelés neutrons thermiques.

L'eau lourde et l'eau légère sont par ailleurs également utilisables comme caloporteurs pour extraire par convection forcée la chaleur produite par les fissions dans le cœur.

Enfin, l'ensemble est entouré de protections biologiques sous forme de blindages (acier, béton) qui absorbent et limitent les rayonnements à l'extérieur de l'installation.

Alors que l'énergie libérée dans le cœur dépend du nombre total de fissions dans tout le volume du cœur, le flux de neutrons (nombre de neutrons qui traverse 1 cm² en 1 sec dans toutes les directions) dépend de la densité de fissions dans le cœur c'est-à-dire du nombre de fissions par unité de volume.

Les différences avec un réacteur de puissance :

La taille du cœur des centrales nucléaires est ainsi beaucoup plus importante que celle des réacteurs de recherche mais les densités de puissance et les flux de neutrons y sont plus faibles comme l'indique, à titre d'exemple, le tableau suivant cf Ref 1 :

	Réacteur à eau pressurisée Type Bugey	Réacteur à Haut Flux ILL de Grenoble			
Puissance thermique	2.775 MW	57 MW			
Puissance électrique	925 MW				
Volume du cœur	25 m³	45 litres			
Nature du combustible	UO ₂	UAI			
Masse du combustible	72,5 t	9,2 kg			
Enrichissement en ²³⁵ U	3,5 %	93%			
Masse ²³⁵ U	2.800 kg	8,6 kg			
Densité moyenne de puissance	110 kW/l	1.300 kW/l			
Pression de fonctionnement	155 bars	14 bars			
Température entrée/sortie	286°/323°	39°/47°			
Flux de neutrons thermiques	3.10 ¹³ n/cm ² .s	1,5.10 ¹⁵ n/cm ² .s			

L'augmentation de l'enrichissement en uranium en ²³⁵U permet de diminuer la masse critique et de réduire considérablement la taille du cœur. Ce qui est mis en évidence dans le tableau comparatif ci-dessus.

Pour obtenir un bon rendement thermodynamique, les centrales nucléaires fonctionnent à des températures les plus élevées possibles alors que les réacteurs de recherche sont, sauf exception, des réacteurs froids ce qui autorise l'usage de l'aluminium pour le gainage du combustible et pour les structures internes du réacteur ; l'aluminium ayant de bien meilleures caractéristiques neutroniques que l'acier mais de moins bonnes propriétés mécaniques.

Le flux de neutrons qui règne dans un réacteur est composé de neutrons rapides directement issus des fissions, de neutrons thermiques obtenus après ralentissement dans le modérateur et aussi de neutrons intermédiaires en cours de ralentissement (le ralentissement s'effectue par chocs successifs des neutrons sur le noyau des atomes du modérateur). Selon que le réacteur sera sous-modéré ou bien modéré, le spectre des neutrons comportera une composante rapide plus ou moins importante, ce qui peut être préjudiciable ou parfois souhaitable selon les objectifs des programmes expérimentaux.

La répartition spatiale des neutrons n'est pas uniforme et décroît du centre vers la périphérie du cœur en présentant des perturbations locales dues, entre autres, au mouvement des barres de contrôle et à la présence des expériences. Ceci peut entraîner la possibilité d'occurrence de «points chauds» qui doivent être traités du point de vue thermo-hydraulique afin d'éviter toute surchauffe du combustible au-delà des limites de sécurité fixées pour empêcher sa dégradation (rupture de gaine pouvant conduire à un relâchement de produits de fission radioactifs dans le réacteur).

A ce propos on mesure l'importance des réacteurs de 4ème catégorie, assemblages et maquettes neutroniques, qui permettent de déterminer expérimentalement les caractéristiques neutroniques des cœurs de réacteurs et valider les codes et les méthodes de calculs neutroniques.

La conception d'un réacteur de recherche très performant doit donc rechercher le meilleur compromis entre plusieurs impératifs contradictoires :

- définir un cœur compact pour atteindre des densités de fission élevées,
- assurer un volume expérimental suffisant pour implanter toutes les expériences,
- extraire des densités de puissance importantes sans nuire aux performances neutroniques du cœur ni gêner son utilisation expérimentale.

Les principaux types de réacteurs de recherche

Les configurations des réacteurs de recherche sont multiples et parfois très particulières notamment lorsqu'il s'agit de prototypes de réacteur. Le présent chapitre décrira plus particulièrement les caractéristiques générales des deux grandes familles qui représentent la quasi-totalité des réacteurs de recherche fondamentale ou d'irradiation (les types 1 et 2 du chapitre classement), tout en sachant que plusieurs variantes peuvent coexister au sein de chaque famille.

Les réacteurs modérés à l'eau lourde

Le cœur de ces réacteurs est modéré et refroidi à l'eau lourde (3). Historiquement, les premiers réacteurs utilisaient les excellentes propriétés neutroniques de l'eau lourde ou du graphite comme modérateur et réflecteur pour pouvoir fonctionner avec de l'uranium naturel, seul combustible disponible à l'époque. Ce fut le cas par exemple des réacteurs NRX (42 MW) et NRU (135 MW) au Canada, Dido (20 MW) et Pluto (20 MW) en Grande-Bretagne dont les modèles ont été exportés ou reproduits en Allemagne, Australie, Danemark, Inde et Taiwan.

Une dizaine de tubes horizontaux appelés canaux sont positionnés à 360 degrés autour du cœur placé au centre d'une cuve à eau lourde afin d'extraire du bloc réacteur des faisceaux collimatés de neutrons thermiques (*beam tubes*). Les canaux traversent les protections biologiques et à leurs extrémités, hors du bloc réacteur, sont installés les appareillages expérimentaux (diffractomètres, spectromètres...). Les qualités modératrices de l'eau lourde permettent d'obtenir des faisceaux de neutrons thermiques très purs (absence de neutrons rapides considérés comme parasites), parfaitement adaptés aux études de physique de la matière condensée. Ces réacteurs étaient entourés de protections biologiques de forte épaisseur en acier et béton de sorte que l'accès aux parties internes imposait des manipulations lourdes au moyen de hottes blindées de chargement/déchargement qu'il fallait positionner sur des ouvertures à bouchon tournant prévues à cet effet dans le bouclier de protection supérieur.

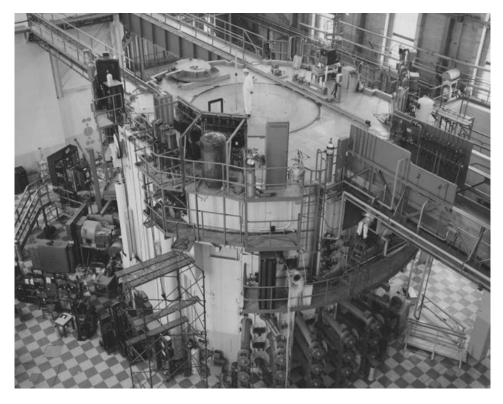


Figure 1 : Hall du réacteur NRX – Le cœur se trouve dans la structure cylindrique centrale. Les expériences étaient concentrées autour des fenêtres de sortie de faisceaux. Cf Ref 3

Par la suite, la possibilité d'utiliser de l'uranium très enrichi en ²³⁵U a permis la réalisation de réacteurs à eau lourde très compacts et à très haut flux dont les principaux composants pouvaient être immergés dans une piscine avec une accessibilité plus aisée depuis la surface, l'eau remplaçant les protections biologiques imposantes antérieures.

Le concept le plus abouti de cette génération est représenté par le RHF à Grenoble dont le cœur, modéré et refroidi à l'eau lourde, est constitué d'un unique élément combustible cylindrique formé de plaques très fines réparties en couronne et chargées en uranium enrichi à 93% en ²³⁵U. Ce qui permet selon Ref 4 de produire le flux de neutrons le plus intense du monde soit 1,5.10¹⁵ neutrons par cm2 et par seconde. La coupe figure 2 ci-dessous du réacteur RHF montre successivement : l'élément combustible, la cuve à eau lourde, la piscine d'eau légère contenant le caisson réacteur, et les protections biologiques.

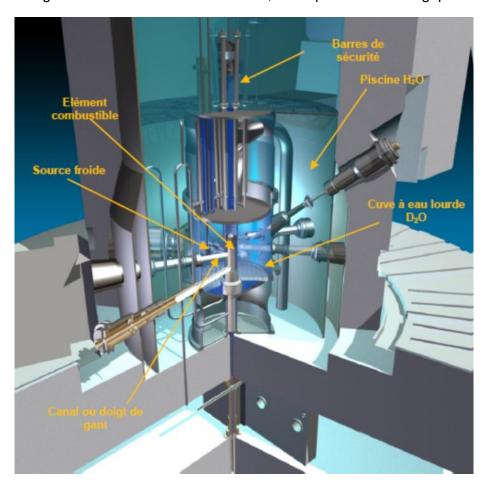


Figure 2 : Coupe verticale 3D du réacteur RHF - Cf Ref 4

L'emploi d'uranium très enrichi permet également de substituer l'eau légère à l'eau lourde comme caloporteur pour le refroidissement du cœur. La baisse des performances est compensée par une exploitation et une maintenance plus faciles et moins coûteuses du fait d'un inventaire en eau lourde moins important et de l'absence d'eau tritiée dans les circuits de refroidissement. En effet sous flux de neutrons les atomes de deutérium de l'eau lourde sont transformés en tritium qui est radioactif. Ce qui impose la parfaite étanchéité des circuits et une surveillance radiologique plus importante.

Les réacteurs à eau lourde ne sont pas très adaptés aux essais de matériaux du fait de la présence d'une cuve à eau lourde fermée et étanche qui rend difficile l'accès direct au cœur. Néanmoins, des emplacements d'irradiations peuvent être implantés en nombre restreint sous forme de doigts de gants à poste fixe pour la production de radio-isotopes, le dopage de silicium et l'analyse par activation. Voir la coupe figure 2 du réacteur RHF. L'intérêt principal de ces réacteurs est d'utiliser les intenses flux de neutrons pour effectuer des expériences ou travaux en recherche fondamentale ou bien appliquée. Cette utilisation se fait grâce aux « faisceaux sortis » de neutrons qui empruntent des canaux dont on peut voir le départ sur la coupe figure 2 du réacteur RHF. A l'intérieur de ces canaux, des guides de neutrons permettent la propagation des neutrons pratiquement sans atténuation sur des longueurs allant jusqu'à 100 mètres. Ainsi de nombreuses expériences peuvent être réparties le long des guides qui vont jusqu'à des halls spécifiques en dehors de l'enceinte de confinement du réacteur. Voir les figures 3 et 4 ci-dessous.

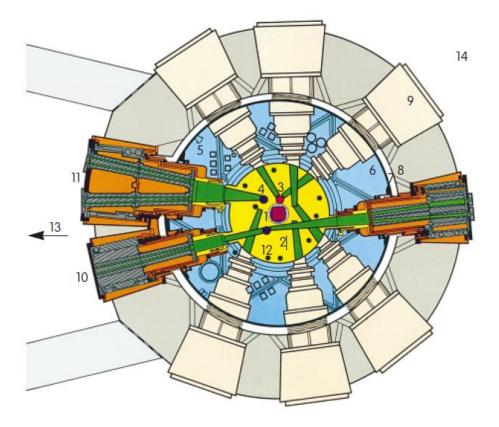


Figure 3 : Coupe horizontale du cœur du réacteur Orphée (CEA – Ref 6)

Les explications ci-dessous relatives aux repères indiqués sur la coupe figure 3 du cœur du réacteur Orphée permettent d'illustrer ce qui a été présenté précédemment :

- 1 = Le cœur proprement dit (refroidi à l'eau légère).
- 2 = Le réflecteur d'eau lourde entourant le cœur.
- 3 et 4 = Respectivement sources chaude et froide : elles permettent de modifier (respectivement réduire ou augmenter) la longueur d'onde des neutrons émis à leur niveau.
- 5 = Piscine d'eau légère entourant le réflecteur d'eau lourde.

6 = Cuvelage de la piscine.

7 et 8 = Vide annulaire et béton.

9 à 12 = Canaux : 9 et 10 = simples, 11 = Canal double, 12 = Vertical

13 = Hall des guides à neutrons.

14 = Hall des expérimentateurs.

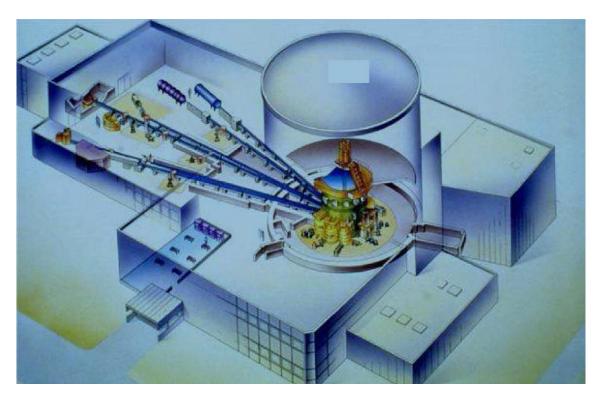


Figure 4 : Vue des bâtiments du réacteur ORPHEE (ECS – Ref 6)

Les réacteurs modérés à l'eau légère

Ils constituent la très grande majorité du parc mondial de réacteurs de recherche. L'eau remplit alors plusieurs rôles : modérateur, réflecteur, caloporteur pour le refroidissement du cœur en convection forcée et enfin protection biologique contre les rayonnements gammas émis par le cœur. Ils utilisent de l'uranium enrichi ou très enrichi en ²³⁵U. La réaction en chaîne de fissions est en effet impossible à obtenir dans un réacteur à uranium naturel modéré à l'eau légère. On peut les regrouper en deux sous-catégories.

Les réacteurs piscine à cœur ouvert

Le bloc cœur est soutenu par des structures au fond d'une piscine d'environ 10 mètres de profondeur. Le refroidissement s'effectue par un circuit primaire ouvert qui aspire l'eau de la piscine à travers le cœur et des échangeurs de chaleur avant de la renvoyer par des diffuseurs au fond de la piscine. L'absence de pressurisation limite la puissance spécifique extractible mais l'accès direct au cœur présente beaucoup d'avantages :

- Simplicité et sûreté intrinsèque (par exemple, refroidissement à l'arrêt par convection naturelle dans la piscine),
- Visibilité et accessibilité du cœur pour le chargement-déchargement des expériences réacteur en fonctionnement,
- Souplesse d'adaptation à l'évolution des programmes (facilité de modification ou de remplacement des structures internes).

Les premiers réacteurs piscine à cœur ouvert ont été construits en de très nombreux exemplaires partout dans le monde dès les années 1950 à partir d'un modèle américain conçu dans le cadre du programme «Atom for Peace». A l'époque, leur puissance ne dépassait pas quelques MW. Ils comportaient généralement 5 faisceaux sortis placés au plus près du cœur, leur ouvrant une certaine polyvalence d'utilisation : études de physique, irradiations et production de radioéléments de base, analyses par activation, enseignement universitaire et formation.

Après la mise en service de deux réacteurs de ce type (Mélusine et Triton), la France a construit, grâce à plusieurs améliorations, deux réacteurs aux performances supérieures d'un facteur 10 à 20. Il s'agit de Siloé (35 MW) qui a fonctionné de 1963 à 1997 et d'Osiris (70 MW) qui a fonctionné de1966 à fin 2015 en offrant des flux de neutrons thermiques et rapides élevés d'environ 4.10¹⁴ n/cm².s. Ces performances restent inégalées pour ce type de réacteur.

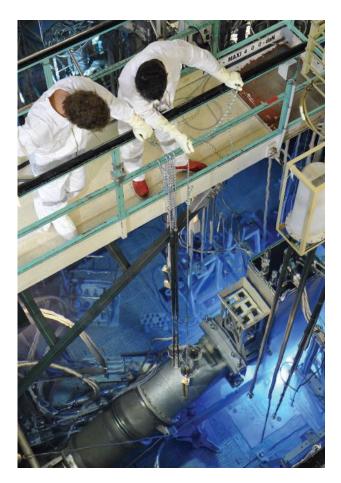


Figure 5 : Manutention en piscine du réacteur Osiris - Cf Ref 5

Les réacteurs piscine à caisson

Dans les réacteurs piscine à cœur ouvert, le flux calorifique maximum évacuable est physiquement limité. En installant le cœur dans un caisson constitutif d'un circuit primaire fermé sous pression, il devient possible d'extraire des puissances thermiques plus élevées et donc d'augmenter les flux de neutrons disponibles. En contrepartie, les emplacements d'irradiation situés dans le cœur sont plus difficilement accessibles et les emplacements périphériques situés dans le réflecteur hors du caisson présentent des flux un peu plus faibles car ils sont atténués par l'absorption des neutrons dans les parois du caisson. Le choix de l'aluminium comme matériau de construction des caissons réduit cette atténuation mais limite leur tenue en pression (environ 10 bars à comparer aux 150 bars des cuves en acier des réacteurs de puissance à eau pressurisée). Ce principe a été retenu pour le RJH (le réacteur Jules Horowitz). Ce qui permettra d'obtenir des flux de neutrons plus élevés que sur Osiris: jusqu'à 5,5.1014 n/cm2.s dans le cœur (neutrons rapides) et dans le réflecteur (neutrons thermiques). Le réacteur belge BR2 qui date de 1961, grâce à un caisson en forme de diabolo sous 22 bars permet d'obtenir des flux de 9.10¹⁴ n/cm².s. Les réacteurs à eau légère sont très bien adaptés aux essais de combustibles et de matériaux pour les différentes filières de réacteurs de puissance mais ne peuvent égaler les réacteurs à eau lourde pour la recherche fondamentale bien que certains d'entre eux comportent un nombre réduit de faisceaux sortis et offrent ainsi une certaine polyvalence d'utilisation.

Autres types de réacteurs :

Afin de montrer la diversité des types de réacteurs de recherche et d'expérimentation, deux autres types de réacteurs méritent d'être cités :

Les réacteurs TRIGA:

TRIGA est l'acronyme anglais pour « *Training, Research, Isotopes, General Atomics* » ce qui signifie « Formation, Recherche, Isotopes, General Atomics ». Ces réacteurs, sont de fait une variante des réacteurs piscine à cœur ouvert. Leur particularité est d'utiliser pour combustible un composé d'uranium et d'hydrure de zirconium (U-ZrH) sous forme de pastilles empilées dans des tubes d'aluminium. Ce combustible offre une très bonne contreréaction en cas d'élévation de température ouvrant ainsi, pour certaines expériences particulières, la possibilité d'effectuer en toute sûreté des transitoires de puissances (jusqu'à 1.000 MW) pendant des fractions de seconde. En régime stable, leur puissance n'excède généralement pas quelques MW.

Cette sûreté de conception en fait en réacteur très utilisé de par le monde. Plus de 30 réacteurs de ce type sont opérationnels.

Les réacteurs à neutrons rapides (RNR) :

Très peu nombreux, ils occupent une place particulière car ils utilisent du plutonium 239 comme combustible. Ils sont totalement dédiés au développement de la filière des réacteurs de puissance à neutrons rapides. Parmi eux, citons Rapsodie (40 MW) utilisé jusqu'en 1983 à Cadarache, FBTR (Inde, 40 MW) construit en coopération sur le modèle de Rapsodie, BOR 60 (Russie, 60 MW) et CEFR (Chine, 65 MW). La Russie a lancé le projet MBIR de 150 MW qui disposera d'une très grande capacité expérimentale pour remplacer BOR 60 (4).

La densité spécifique très importante du combustible des cœurs de réacteurs rapides impose l'utilisation de caloporteurs très efficaces tels que les métaux liquides et en particulier le sodium liquide. Les réacteurs RNR prototypes sont conçus prioritairement pour produire de l'énergie mais ils offrent généralement la possibilité de réaliser quelques irradiations technologiques analogues à celles des réacteurs de recherche et d'essais en bénéficiant de flux de neutrons rapides très supérieurs. Ainsi Phénix à Marcoule (1973-2009), réacteur à neutrons rapides de 250 MW, comportait plusieurs emplacements pour réaliser des essais complémentaires à ceux déjà effectués dans Rapsodie, Siloé et Osiris. Le projet de démonstrateur technologique de réacteur de quatrième génération à neutrons rapides ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) devrait également comporter des capacités d'irradiations.

Cependant l'intérêt principal des RNR est de permettre, grâce au fonctionnement en mode surgénérateur, de multiplier par près de 100 la disponibilité en ressources fissiles primaires (4).

Les principales utilisations des réacteurs de recherche

Elles vont de la recherche fondamentale aux recherches appliquées dans nombre de domaines ou encore à la production de radioéléments à usage médical ou industriel cf Ref 1.

La recherche fondamentale

Le neutron ne porte pas de charge électrique ce qui lui donne un grand pouvoir de pénétration dans la matière. Aussi il constitue donc une sonde d'investigation unique pour les études de physique du solide, l'étude des structures et des excitations magnétiques, la détermination des structures cristallines, et encore, pour les recherches en physico-chimie, biochimie et biologie. Ces recherches s'effectuent au moyen d'instruments expérimentaux très sophistiqués : notamment diffractomètres, spectromètres ou autres appareils dont la qualité et les performances s'avèrent aussi importantes que la qualité et l'intensité des faisceaux de neutrons.

Parmi les grands réacteurs entièrement dédiés à la recherche fondamentale, le RHF à Grenoble, avec plus de 50 instruments installés à la sortie des faisceaux, est sans conteste le plus recherché et utilisé par les physiciens du monde entier. Ainsi Plus de 750 expériences sont effectuées chaque année à l'ILL par environ 1500 chercheurs qui viennent y réaliser leurs programmes cf Ref 4.

Figure 6 : Le long d'un faisceau sorti - Hall d'expériences du RHF-ILL - Cf Ref. 4

La recherche appliquée et technologique

Les flux de neutrons des réacteurs d'essais, plus importants que ceux rencontrés dans les centrales, permettent de réduire considérablement la durée de la plupart des expériences et de gagner un temps précieux dans l'analyse et l'interprétation des résultats. Par exemple une irradiation effectuée sur le réacteur Osiris pouvait représenter plus de 10 fois celle reçue en réacteur électrogène type Bugey (flux de neutrons respectifs : 4.10¹⁴ et 3.10¹³ n/cm².s). Ceci dit, l'irradiation ne représente qu'une étape, certes la plus importante d'un essai. Elle doit être suivie d'une série d'examens post-irradiations qui font eux-mêmes appel à des techniques et des moyens importants.

Les essais à réaliser, sont la plupart du temps en support des programmes de développement des différentes filières de réacteurs de puissance. Ils visent à :

- l'amélioration régulière des performances des combustibles et des matériaux utilisés dans les centrales en service.
- la sélection, la caractérisation et la qualification de nouveaux matériaux et combustibles pour les réacteurs de nouvelles générations, l'amélioration des connaissances en matière

de sûreté (études d'évolution et de vieillissement des matériaux, comportement en transitoires, études d'accident...).

Les essais de sûreté

L'objectif est d'étudier pour les différentes filières de centrales nucléaires, les situations accidentelles consécutives à une perte de réfrigérant primaire ou à une injection positive de réactivité suite, par exemple, à l'éjection d'une barre de contrôle et d'en analyser les conditions initiales, le déroulement et les conséquences sur le comportement du combustible, les circuits de refroidissement, les rejets dans les enceintes de confinement et l'environnement.

Il s'agit d'expérimentations complexes nécessitant de longues périodes de conception, de préparation, d'analyse et d'interprétation. Seul un très petit nombre de réacteurs dans le monde sont conçus pour réaliser ces programmes qui s'effectuent dans le cadre de collaborations internationales comme c'est le cas à Cabri au CEA à Cadarache.

Autres utilisations

Elles intéressent des domaines scientifiques ou technologiques très variés. Dans le domaine de la santé, elles apportent une contribution essentielle dans l'établissement des diagnostics par imagerie médicale et le traitement de certains cancers.

Production de radio-isotopes pour la médecine et pour l'industrie :

Les réacteurs de recherche assurent la quasi-totalité de la production mondiale de radioisotopes à usage médical. En France, il se pratique chaque année plus d'un million de
diagnostics in vivo par scintigraphie en utilisant principalement le technétium 99m et l'iode
131 tandis que plus de 100.000 patients sont traités par radiothérapie (cobalt 60 et iridium
192). En Europe la continuité de cette production est actuellement assurée par 5 réacteurs.
Mais leur âge avancé (4 d'entre eux ont plus de 60 ans) fait craindre une pénurie dans un
avenir proche. Cette crainte s'était déjà exprimée avant la fermeture d'Osiris fin 2015 (1). Et
depuis aucun nouveau réacteur n'a pris la relève. La figure 5 montre la manutention du
dispositif MOLFI en piscine du réacteur Osiris. Le dispositif MOLFI (MOLybdène de
Fission) est utilisé pour irradier des cibles d'uranium très enrichi en isotope 235. C'est la
fission de l'uranium 235 qui va produire le molybdène 99 dont est issu par désintégration le
technétium 99 m. (1)

Dans l'industrie, les radio-isotopes tels que le carbone 14, le sodium 24, l'or 198 sont utilisés comme traceurs radioactifs ; tandis que les sources radioactives scellées (iridium 192) sont employées pour les contrôles non destructifs, notamment pour effectuer les radiographies des soudures.

Analyse par activation neutronique:

L'analyse par activation neutronique permet de détecter des éléments présents sous forme de traces à très faibles concentrations, jusqu'à 1 partie par milliard, dans des échantillons prélevés dans le cadre de recherches sur les matériaux ultra purs, en géologie, archéologie,

sciences de l'environnement, biomédecine, pharmacologie ou encore pour des expertises médico-légales.

Examens non destructifs par neutronographie:

Ces examens sont utilisés pour examiner des pièces ou des assemblages comportant des éléments légers (H, Li, Be, B, etc.) comme les matières plastiques qui sont pratiquement transparents aux rayons X et gammas mais opaques aux neutrons thermiques ; à l'inverse des éléments lourds, tels les métaux comme le plomb ou le fer qui sont eux opaques aux rayons X et gammas et transparents aux neutrons thermiques. Cette technique est utilisée pour le contrôle non destructif de pièces pour l'aéronautique et l'espace : structures en nid d'abeille, dispositifs pyrotechniques ou encore boulonnerie explosive des lanceurs Ariane...

Dopage de lingots monocristallins de silicium :

Ce dopage se fait par capture de neutrons thermiques et transmutation d'une faible partie (1 à 10 ppm) des noyaux de l'isotope Silicium 30 en Phosphore 31 (dopage de type N). Ce procédé est mis en œuvre dans une dizaine de réacteurs dans le monde pour produire environ 150 t/an de silicium dopé nécessaire pour des applications d'électronique de puissance comme les éoliennes, les installations à énergie solaire, les véhicules hybrides et les transports (trains, tramways). Le réacteur Osiris fut un important producteur de silicium dopé. Actuellement le réacteur belge BR2 en produit de 15 à 25 tonnes par an pour des clients chinois et japonais.

Réacteurs de recherche et non-prolifération

Les réacteurs de recherche peuvent devenir des vecteurs de prolifération s'ils sont détournés de leur usage civil soit pour obtenir directement de l'uranium 235 (sans passer par l'étape enrichissement) soit pour produire du plutonium 239. Ces deux matières fissiles qui permettent la fabrication d'armes atomiques. Dans les années 1960, le combustible des réacteurs de recherche était à base d'uranium très enrichi à 90% ou 93% en uranium 235 (HEU: Highly Enriched Uranium). Afin d'éviter le détournement de cet uranium à des fins militaires, les Etats-Unis ont lancé en 1978 un vaste programme appelé RERTR (Reduced Enrichment for Research and Test Reactors) pour limiter ses fournitures à de l'uranium enrichi à 20% (LEU: Low Enriched Uranium) considéré comme non proliférant. La Russie même position, се programme de substitution progressivement appliqué dans tous les réacteurs de recherche, à quelques exceptions près, depuis environ 30 ans et devrait se terminer en 2020. A noter qu'il a fallu qualifier un nouveau type de combustible (uranium-silicium) d'une densité plus élevée que le combustible classique uranium-aluminium afin de conserver approximativement la même charge d'uranium 235 par unité de volume et limiter ainsi la baisse des performances.

L'irradiation d'uranium 238 présent à 99,3% dans l'uranium naturel produit du plutonium 239. Le retraitement du combustible irradié permet de récupérer le plutonium qui s'y était formé. Les réacteurs à eau lourde (ou graphite) dont le combustible est constitué d'uranium naturel ou faiblement enrichi ont une capacité de production de plutonium plus importante que les

autres. Aussi ils sont considérés comme plus proliférants. Un réacteur à eau lourde d'une puissance de 20 MW pourrait produire une quantité annuelle de plutonium de quelques kilogrammes, suffisante pour alimenter un programme militaire.

Dans ce contexte, les suspicions qui pèsent actuellement sur la Corée du Nord qui a construit un réacteur de 25 MW à uranium naturel modéré au graphite associé à une installation d'extraction de plutonium ne sont pas infondées. Comme pour l'Iran à propos de la construction d'un réacteur de 40 MW à eau lourde et uranium naturel... D'autres pays avant eux ont présenté des situations similaires avant que, sous la pression de la communauté internationale, ils se décident à adhérer à l'AIEA et à se soumettre à ses contrôles. L'AIEA (Agence internationale de l'énergie atomique) est une organisation internationale placée sous l'égide de l'ONU. Ses missions sont de promouvoir les usages pacifiques de l'énergie nucléaire, et à limiter le développement de ses applications militaires.

La sûreté des réacteurs de recherche

Les réacteurs de recherche en France sont soumis par l'Autorité de Sûreté Nucléaire (ASN) à la même réglementation que les réacteurs de puissance pendant toutes les étapes de leur vie : autorisations de création, d'exploitation, de modification, réévaluation décennale de sûreté, inspections régulières. Ils présentent cependant beaucoup moins de risques potentiels pour l'environnement car l'inventaire des produits de fission dangereux présents dans leur cœur est bien plus faible. Après l'accident de Fukushima, l'ASN a durci les dispositions existantes afin de renforcer la résistance de tous les réacteurs aux situations accidentelles ultimes. A titre d'exemple, le RHF de Grenoble doit désormais prendre en compte un séisme majoré de sécurité qui entraînerait la rupture des 4 barrages situés sur le Drac, en amont de Grenoble et du RHF, avec comme conséquence l'inondation du site du RHF sous 6 mètres d'eau. De même, l'avis de l'ASN qui a entraîné l'arrêt du réacteur Osiris est semble-t-il basé sur des principes maintenant applicables aux nouvelles installations notamment la protection vis-à-vis d'une chute d'avion (1). A ce propos, on notera que, bien qu'il soit de 5 ans plus âgé qu'Osiris, le réacteur belge BR2 a reçu l'autorisation de fonctionner jusqu'en 2026.

En matière de politique de sûreté nucléaire, comme sur les autres grands sujets nucléaires, la concertation internationale s'effectue sous l'égide de l'Agence Internationale de l'Energie Atomique (AIEA). Aux pays n'ayant pas d'organisation de sûreté disposant de toutes les compétences, l'AIEA peut apporter son concours pour procéder à des expertises et des revues de sûreté INSARR (Integrated Nuclear Safety Assessment of Research Reactors) ou OSART (Operational Safety Review Team) pour les réacteurs de puissance.

Les réacteurs de recherche en France

Régulièrement le CEA publie un bilan annuel des réacteurs de recherche français. Avant de détailler les faits marquants et les activités en cours de chaque réacteur, un tableau placé au début de rapport donne les principales utilisations de chacun. Voici celui figurant dans le bilan 2013 :

					4	ibles		delles		100		
				bill	aul	Sti	adus	sir. vie	/3	all	ato	Cale
		4	0	Mar	"COLL	~	onsil	"diad,	90%	, que	10 solle Hat	6,
	929	Meder	ine	ilo. dia	ilo. Ma	ilo. Olic	atte utro	no lici	The THE	Mic. 1de	de shere hai	
	6.84	No	140	ion materi	aut combi	POL	Aginos indus	atrielle's	400	Elin	de sofete Nati	
AZUR	33				•				•		•	
CABRI	36									•		
CALIBAN	44			•	•	•		•	•	•	•	
ÉOLE	48					•						
ISIS	32				•	•			•			
MASURCA	54					•			•			
MINERVE	50				•	•			•			
ORPHÉE	12	•	•			•	•	•				
OSIRIS	22	•		•		•	•					
PHÉBUS	40									•		
PHÉNIX	27		•	•								
PROSPÉRO	46		•			•				•	•	
RES	58					•					•	
RHF-ILL	16						•	•				
RJH	61					•	•		•			

Figure 7 : Tableau extrait du Bilan 2013 des réacteurs de recherche français - Cf Ref 5

Suivant ce tableau, en excluant Phénix, déjà arrêté, ainsi que le RES et le RJH en cours de construction, il y avait donc en 2013, 12 réacteurs de recherche (au sens large) opérationnels en France.

AZUR:

Le réacteur Azur (acronyme pour Alliage Zirconium Uranium) est situé à Cadarache. C'est une maquette critique de la propulsion nucléaire. Il est exploité par TechnicAtome. Mis en service en 1962, Azur a expérimenté tous les cœurs des réacteurs destinés à la propulsion nucléaire navale de la marine nationale française. Il est également utilisé pour la formation

des équipages de conduite des chaufferies nucléaires embarquées et l'enseignement. Il a été rénové en 2002.

CABRI et PHEBUS:

Situé également sur le centre de Cadarache Cabri est un réacteur de type piscine. Il est constitué d'un cœur nourricier et d'une boucle expérimentale, dont la partie située au centre du cœur nourricier reçoit le dispositif d'essai qui contient le crayon combustible à tester. Cabri est destiné à étudier les « excursions de puissance » très rapides pouvant conduire, selon les objectifs de l'essai, jusqu'à la rupture de gaine du crayon testé. En régime stabilisé sa puissance thermique maximale est de 25 MW. En régime de pulse elle peut atteindre 20 GW. Cabri a été mis en service en 1963. Il a été rénové et sa boucle d'essai au sodium des débuts a été remplacée par une boucle d'essai à eau sous pression. Cabri est désormais destiné à la recherche sur les réacteurs à eau pressurisée alors qu'il était initialement destiné aux études de sûreté des réacteurs rapides refroidis au sodium liquide (Phénix, Superphénix, EFR).

Le réacteur Phébus a été mis en service en 1979 sur le site de Cadarache. C'était une installation de conduite de recherches intégrales sur les accidents graves. La décision d'arrêter les expériences de sûreté dans le réacteur a été prise en 2007 et celle d'arrêter l'installation en 2013.

CALIBAN et PROSPERO:

Le réacteur CALIBAN, en exploitation sur le centre du CEA de Valduc depuis 1970, est un réacteur expérimental compact de type pulsé à cœur métallique fortement enrichi. Il est installé dans une cellule de grande dimension. L'introduction brutale d'une barre dite d'excursion porte rapidement le réacteur à un état sur-critique mais la dilatation du combustible due à l'échauffement de la matière fissile provoque aussitôt une diminution de réactivité, donc de puissance. La bouffée de neutrons et de gammas de fission dure 50 µs (à mi-hauteur du pulse) et la puissance de crête atteint 20 GW. Ce réacteur a été développé pour les besoins de la DAM (Direction des Applications Militaires) du CEA afin de simuler les effets radiatifs d'agressions nucléaires sur les composants et systèmes électroniques. Ce réacteur a par exemple participé avec le réacteur PROSPERO à la qualification des EDAC (Ensemble de Détection et d'Alarme de Criticité) de CANBERRA.

Le réacteur PROSPERO, lui aussi sur le centre du CEA de Valduc, est en exploitation depuis 1968. Lui aussi a été développé afin de simuler les effets radiatifs d'agressions nucléaires sur les composants et systèmes électroniques. Il dispose d'un cœur métallique piloté par des barres de contrôle. Il fonctionne en régime continu à la puissance maximum de 3 kW.

EOLE. MINERVE et MASURCA:

Situés sur le site de Cadarache, ces trois réacteurs sont des maquettes critiques, des réacteurs de très faible puissance (respectivement 1 KW, 100 W et 5 KW) destinées à obtenir des données neutroniques précises concernant la réaction de fission. Grâce à eux, il était possible de simuler différents types de cœurs de réacteurs industriels :

- Cœurs de réacteurs à neutrons thermiques à eau pressurisée (REP) ou à eau bouillante dans Eole.

- Minerve étant principalement utilisé pour les mesures de sections efficaces des combustibles,
- Cœurs de réacteurs à neutrons rapides à sodium ou à gaz dans Masurca.

Ce dernier a permis aussi l'étude de la transmutation des actinides mineurs dans le cadre des lois de 1991 et 2006 sur la gestion des déchets nucléaires de haute activité et à vie longue. Suite à une demande de l'ASN que le CEA estimait ne pas pouvoir satisfaire dans les délais fixés, les réacteurs ÉOLE et MINERVE ont été arrêtés définitivement le 21 décembre 2017. Quant à Masurca, le CEA a décidé d'entreprendre un important programme de rénovation de l'installation ; la reprise des expérimentations est prévue avec la divergence du réacteur en 2023. Sans doute qu'il a été jugé indispensable de conserver cette installation très flexible qui permet d'aborder un nombre quasi illimité de combinaisons de solutions de cœurs. Des nouveaux concepts pourront continuer à être validés notamment pour les RNR, les HTR ou encore les réacteurs hybrides sous-critiques appelés en anglais ADS (Accelerator Driven System).

ORPHEE:

Le réacteur expérimental Orphée, est implanté sur le site de Saclay. Ce réacteur d'une puissance thermique de 14 MW a divergé fin 1980. Son cœur modéré à l'eau lourde est dans un caisson immergé dans une piscine d'eau légère. Voir la figure 3 et les explications correspondantes. Il s'agit d'un réacteur spécialement conçu pour la production de faisceaux de neutrons thermiques. Voir la figure 4 qui montre le schéma d'ensemble du réacteur avec ses faisceaux sortis. Il est associé au Laboratoire Léon Brillouin (LLB) qui rassemble principalement des chercheurs du CNRS et du CEA dans le domaine de la spectrométrie neutronique. En 2017 le LLB a accueilli 268 expérimentateurs extérieurs.

Quelques chiffres:

- Flux maximum de neutrons thermiques en réflecteur : 3.10¹⁴ n/cm².s,
- 9 canaux horizontaux, 20 faisceaux de neutrons,
- 9 canaux d'irradiation verticaux,
- 26 aires expérimentales.

Le dossier d'orientation pour le 3^{ème} réexamen d'Orphée a été transmis en septembre 2017. La déclaration de l'arrêt de fonctionnement du réacteur Orphée a été transmise aux Autorités fin 2017 annonçant cet arrêt à fin décembre 2019.

OSIRIS et ISIS:

Implanté sur le centre CEA de Saclay, Osiris était un réacteur de recherche, de type piscine à cœur ouvert où l'eau joue le rôle de modérateur, de fluide caloporteur et de protection biologique. Sa puissance thermique était de 70 MW. Autorisé par décret du 8 juin 1965, OSIRIS a divergé en 1966 et atteint sa puissance maximale en 1968. La décision de mise à l'arrêt du réacteur, prise lors du Comité de l'énergie atomique du 9 décembre 2013, a été confirmée en juillet 2014 et son arrêt définitif de fonctionnement est intervenu le 16 décembre 2015. Implanté au voisinage du réacteur OSIRIS dont il a été la maquette

neutronique, le réacteur ISIS fait partie de la même INB (Installation Nucléaire de Base), l'INB 40. Sa puissance maximale thermique est de 700 kW. Il est utilisé pour effectuer différentes expériences notamment d'irradiation, à la qualification d'instrumentation ou encore à la formation. Osiris a été un réacteur incontournable dans le domaine de la recherche appliquée et technologique. Les nombreuses irradiations technologiques effectuées ont permis d'améliorer la connaissance des matériaux et combustibles utilisés aujourd'hui et de développer ceux qui seront utilisés dans les centrales nucléaires du futur.

Osiris a permis également :

- La production de radioéléments à usage médical ou industriel,
- La production de silicium dopé pour les besoins de l'électronique de puissance,
- L'analyse par activation neutronique.

La perte de cet outil est grande. Il faut maintenant attendre la mise en service du RJH dont la construction n'est pas encore terminée.

Après l'arrêt définitif de fonctionnement du réacteur OSIRIS, survenu fin 2015, l'arrêt définitif de fonctionnement du réacteur ISIS a dû survenir au plus tard en mars 2019. Cette date correspond à la date anniversaire du précédent réexamen de sûreté décennal de l'INB 40. En conséquence, c'est la totalité de l'INB 40 qui est maintenant normalement à l'arrêt.

PHENIX:

Implanté sur les bords du Rhône, faisant partie intégrante du site nucléaire de Marcoule dans le Gard, Phénix est un réacteur prototype de la filière des Réacteurs à Neutrons Rapides (RNR) à sodium. Après sa première divergence en 1973, ses premiers kilowatts-heures ont été livrés en décembre 1973. Le 6 mars 2009, l'installation a arrêté définitivement sa production électrique. Les Opérations de Préparation à la Mise à l'Arrêt Définitif (OPMAD) ont alors commencé. Le réacteur Phénix avait une puissance thermique de 563 MW. Au cours de ses 36 années de fonctionnement, le réacteur a produit 24,44 milliards de kilowatts-heures, délivrés au réseau EDF, soit environ la consommation annuelle d'électricité du Gard. A noter que le redémarrage de Phénix fin 2003 après toute une série de travaux de mise à niveau de sûreté était surtout lié à la réalisation du programme d'essais sur la transmutation demandé par la loi sur les déchets radioactifs de 1991 (loi Bataille). Six cycles d'irradiation purent alors encore être réalisés.

RHF-ILL:

Le RHF (Réacteur à Haut Flux) et l'ILL (Institut Laue Langevin) son exploitant sont situés au nord du polygone scientifique de Grenoble. Le RHF est un réacteur du type à faisceaux sortis. Il date de 1971 mais son cœur a été changé en 1994. Ce dernier, refroidi et modéré à l'eau lourde (voir figure 2) lui permet de produire le flux de neutrons le plus intense du monde. Cela en fait un réacteur très demandé par les chercheurs : plus de 1 500 propositions d'expériences sont reçues chaque année.

Quelques chiffres:

- Puissance thermique: 58 MW,
- Flux maximum de neutrons thermiques en réflecteur : 1,5.10¹⁵ n/cm².s,
- 19 faisceaux de neutrons,
- 40 aires expérimentales,
- 750 expériences réalisées par 1500 chercheurs chaque année.

Le RHF fait de l'ILL la première installation mondiale de recherche neutronique. A noter que l'ILL est géré par la France (CEA + CNRS), l'Allemagne et le Royaume Uni et qu'il a conclu des partenariats scientifiques avec 11 autres pays européens et l'Inde.

RES:

Le RES (Réacteur d'Essai à terre) est le nouveau réacteur nucléaire expérimental de propulsion navale en fonctionnement sur le site de Cadarache. Il succède au réacteur PAT (Prototype A Terre) arrêté en 1992, et au réacteur RNG (Réacteur de Nouvelle Génération) arrêté en 2005. Après beaucoup de retard sur les prévisions initiales, la première divergence a eu lieu en octobre 2018. Le RES est une version modifiée des réacteurs de type K15 (puissance thermique de 150 MW) qui équipent notamment les SNLE (sous-marins nucléaires lanceurs d'engins) et le porte-avions Charles de Gaulle. (5)

Les principaux objectifs du RES sont :

- le soutien de la flotte des bâtiments à propulsion nucléaire,
- la qualification du combustible et des cœurs des chaufferies actuelles et futures,
- la mise au point et la qualification de concepts nouveaux (en premier lieu pour le programme de SNA de nouvelle génération Barracuda).

Il participera aussi à la formation des marins à la conduite des réacteurs nucléaires. Selon Wikipedia il alimentera en chaleur le réseau de chauffage du centre de Cadarache.

RJH:

Ce réacteur de 100 MW de puissance thermique, prévu pour remplacer Osiris, est en cours de construction sur le site de Cadarache. Nous lui consacrerons un article.

Sept ans après ce bilan 2013, la moitié des réacteurs de recherche français aura disparu : début 2020, il n'y aura plus que 6 réacteurs de recherche opérationnels en France !

A noter que la base de données de l'AIEA Ref 2 n'en donne actuellement que 4 (RHF, Orphée, Cabri et Isis) sur les 39 répertoriés (dont le RJH en construction, Masurca en arrêt temporaire et 33 arrêtés définitivement).

Perspectives

Le coût d'investissement d'un réacteur de recherche dépend de son type et de sa puissance mais aussi de l'importance des moyens associés pour la réalisation des expériences et des examens post-irradiations. Il peut atteindre plus d'un milliard d'euros. Leur durée de vie, en général de 40 à 50 ans, dépend de différents facteurs dont le vieillissement n'est pas toujours le plus déterminant. La capacité à prendre en compte l'évolution des programmes expérimentaux ou celle des critères de sûreté dans un sens de plus en plus contraignant, place beaucoup d'installations dans une situation difficile à traiter aussi bien sur le plan technique que financier.

Ceci explique sans doute que depuis 20 ans, nous assistons à une baisse régulière du nombre de réacteurs en service. Et cette tendance devrait se poursuivre car le vieillissement du parc induit un coût croissant de leur maintien en activité alors que les besoins exprimés par les programmes nucléaires sont plutôt en diminution. Ainsi en Europe, la Grande-Bretagne, la Suède, le Danemark, l'Espagne et l'Italie n'ont plus de réacteurs de recherche.

On se dirige vers un parc réduit et très sélectif de réacteurs performants, financés et exploités dans le cadre de collaborations multinationales à l'instar de ce qui se pratique de plus en plus pour ce qu'on appelle les Très Grands Equipements de recherche (RHF, ITER, Grands Accélérateurs, Sources de rayonnement synchrotron ou Sources à spallation). Le financement du RJH n'échappe pas à ce principe.

Pour se limiter à la France, la prochaine mise en service du RJH va permettre d'assurer la relève des réacteurs d'essais français et européens déjà arrêtés ou en fin de vie. Pour le reste, l'avenir des réacteurs de recherche en France est devenu incertain. Les projets ZEPHYR (projet de maquette critique pour remplacer ÉOLE et MINERVE) et surtout ASTRID (projet de démonstrateur RNR) verront-ils le jour ?

A l'occasion de la signature du Contrat stratégique pour l'industrie nucléaire, le 28/01/2019, le site du CEA ref. 5 indique : « Concernant la fermeture du cycle du combustible et le projet d'un réacteur rapide (ASTRID), François de Rugy (l'actuel ministre de l'Ecologie, du Développement durable et de l'Energie), a indiqué qu'il s'agissait aujourd'hui d'un programme de recherche qui n'impliquait pas la construction d'un nouveau réacteur. »

Les Etats-Unis ont quant à eux compris l'importance d'un réacteur à neutrons rapides puisqu'ils viennent de lancer le projet VTR (Versatile Test Reactor) . Cf Ref 7

Sources:

Internet, en particulier les sites Wikipédia et les sites ou documents suivants :

Ref 0: https://fr.wikipedia.org/wiki/R%C3%A9acteur_nucl%C3%A9aire_de_recherche

Ref 1 : https://www.encyclopedie-energie.org/les-reacteurs-de-recherche/ . Site très complet sur le sujet et principal contributeur au présent article.

Ref 2 : https://www.iaea.org/fr/themes/les-reacteurs-de-recherche - Site de l'AIEA (Agence Internationale de l'Energie Atomique).

Ref 3: http://teachnuclear.ca/fr/tout-sur-le-nucleaire/histoire-du-nucleaire-au-canada/recherche-nucleaire/reacteur-nrx/ - Site d' ÉduNucléaire qui est une association nucléaire canadienne.

Ref 4 : https://www.ill.eu/fr/reacteur-et-securite/surete/tsn-transparence-surete/ - Site de l' ILL (Institut Laue Langevin) qui exploite le RHF (Réacteur à Haut Flux).

Ref 5 : http://www.cea.fr/ - Site du CEA. Les requêtes peuvent rechercher des informations et documents y compris dans les sites des diverses implantations du CEA. Notamment « Bilan des réacteurs de recherche français » de 2013 et celui de 2017.

Ref 6 : https://www.asn.fr/Controler/Evaluations-complementaires-de-surete - Site de l'ASN. Il permet à ce niveau de consulter tous les rapports établis par les exploitants dans le cadre des ECS.

Ref 7: http://www.world-nuclear-news.org/Articles/US-launches-test-reactor-project - Les Etats-Unis lancent le projet VTR (Versatile Test Reactor) - Réacteur à neutrons rapides refroidi au sodium.

Commentaires:

- (1) Voir l'article des Plumes de juin 2016 : « Pénurie de technétium 99m imminente ? »
- (2) A priori, la base de données de l'AIEA ne contient que les réacteurs de recherche déclarés. En effet, alors que le prototype de surgénérateur Phénix (en cours de démantèlement) y figure, le dernier né des réacteurs expérimentaux de propulsion navale, le RES, n'y figure pas.
- (3) L'eau lourde ou oxyde de deutérium D₂O (ou ²H₂O) est constituée des mêmes éléments chimiques que l'eau ordinaire H₂O (ou ¹H₂O), mais ses atomes d'hydrogène sont des isotopes lourds, du deutérium (le noyau de deutérium comporte un neutron en plus du proton présent dans l'atome d'hydrogène).
- (4) Voir l'article des Plumes de juin 2018 : « Les réacteurs à neutrons rapides en 2018 ». En utilisant la surgénération, la France dispose, avec ses stocks existants d'uranium appauvri et de retraitement, d'environ 5 000 ans de production électrique au niveau actuel.
- (5) La construction du RES a été assurée par TechnicAtome (ex Areva TA et à l'origine ancien département de construction des piles du CEA). TechnicAtome produit et assure la maintenance des réacteurs nucléaires de propulsion navale français. TechnicAtome participe également à la construction du RJH.