François PONCELET

Mars 2025

Les générateurs thermoélectriques nucléaires

1. Les GTR

Les générateurs thermoélectriques à radioisotopes ou GTR (en anglais RTG) sont de générateurs électriques très simples produisant de l'électricité à partir de la chaleur. La chaleur peut être produite par des phénomènes nucléaires et est convertie en électricité. Aujourd'hui on utilise des thermocouples (effet Seebeck). Pour l'avenir on recherche des voies avec de meilleurs rendements notamment via les moteurs Stirling. C'est ce que nous allons voir maintenant.

2. Quel usage pour les GTR?

Avant les descriptions techniques il est important de s'intéresser aux objectifs visés par ces modes de production d'électricité pour mieux comprendre ce qui gouverne leur conception. Les GTR cherchent à produire de l'électricité de manière autonome pendant une grande durée de temps dans des conditions complètement isolées donc sans maintenance possible. Les utilisations typiques sont les sondes spatiales à destinations lointaines quand les panneaux solaires ne conviennent plus. Il y a aussi des applications militaires sous-marines, des phares isolés en Sibérie à l'époque de l'URSS. Pour l'exploration humaine de la Lune et de Mars, la NASA regarde de près ce mode de génération d'électricité comme on le verra avec le projet Kilopower.

3. La source de chaleur nucléaire

a. Radioisotopes

Dans ce cas la chaleur est produite par désintégration radioactive d'un radioisotope. Le radioisotope retenu doit avoir une demi-vie assez courte afin de fournir une puissance suffisante. On choisit des demi-vies de l'ordre de quelques dizaines d'années. Il s'agit le plus souvent de plutonium 238, sous forme de dioxyde de plutonium 238PuO₂, un puissant émetteur de particules alpha dont la période radioactive (demi-vie) est de 87,74 ans. Cet isotope est de loin le plus utilisé parce que, outre sa demi-vie particulièrement bien adaptée, il émet tout son rayonnement sous forme de particules alpha, plus efficacement converties en chaleur que les particules bêta et a fortiori que les rayons gamma.

Le Polonium est utilisé quand on désire des grandes puissances mais il ne peut produire que sur des temps courts.

L'Américium 241 est envisagé pour les temps plus longs que le Plutonium.

Les Curiums peuvent aussi convenir (Cm 242 ou Cm 244) mais ces produits sont difficiles à produire et ils émettent des neutrons indésirables.

Le tableau suivant présente la variation dans le temps de la puissance pour les trois radioisotopes les plus souvent envisagés.

Variation dans le temps de la puissance d'un générateur thermoélectrique (GTR) pour trois radioisotopes 1

	iaulois	biopes	
Radioisotope	²⁴¹ Am	²³⁸ Pu	²¹⁰ Po
Période radioactive	432,2 ans	87,74 ans	138,38 jours
Puissance spécifique	106 W/kg	567 W/kg	140 000 W/kg
Matériau radioactif	²⁴¹ AmO ₂	PuO ₂ à 75 % de ²³⁸ Pu	Po à 95 % de ²¹⁰ Po
Puissance initiale	97,0 W/kg	390,0 W/kg	133 000 W/kg
Après 1 mois	97,0 W/kg	389,7 W/kg	114 190 W/kg
Après 2 mois	97,0 W/kg	389,5 W/kg	98 050 W/kg
Après 4,5 mois			66 500 W/kg
Après 6 mois	96,9 W/kg	388,5 W/kg	53 280 W/kg
Après 1 an	96,8 W/kg	386,9 W/kg	21 340 W/kg
Après 2 ans	96,7 W/kg	383,9 W/kg	3 430 W/kg
Après 5 ans	96,2 W/kg	374,9 W/kg	14 W/kg
Après 10 ans	95,5 W/kg	360,4 W/kg	0 W/kg
Après 20 ans	93,2 W/kg	333,0 W/kg	0 W/kg
Après 50 ans	89,5 W/kg	262,7 W/kg	0 W/kg
Après 87,74 ans		195,0 W/kg	
Après 432,2 ans	48,5 W/kg		

Rougeoiement d'une pastille de ⁵³ plutonium 238 sous l'effet de sa propre désintégration radioactive.

b. Microréacteur nucléaire

Outre le mode de production de chaleur par captation des rayonnements des isotopes radioactifs il est possible de produire de la chaleur par réaction en chaîne dans un microréacteur nucléaire.

C'est le cas pour le projet Kilopower de la NASA : le réacteur nucléaire spatial KRUSTY.

Le principe est le suivant : un barreau d'alliage métallique d'uranium/molybdène (UMo) est entouré d'un réflecteur neutronique d'oxyde de béryllium escamotable. Si le réflecteur est en place la réaction en chaîne a lieu, s'il est escamoté la réaction en chaîne n'a pas lieu. L'enrichissement est évidemment du HEU : 93 % en U5!

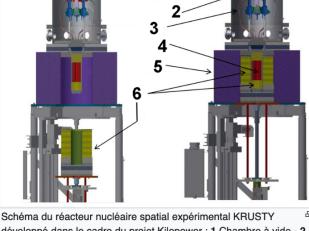
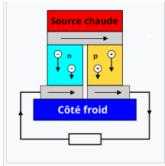


Schéma du réacteur nucléaire spatial expérimental KRUSTY
développé dans le cadre du projet Kilopower : 1 Chambre à vide - 2
Moteurs Stirling - 3 Caloducs - 4 Combustible nucléaire constitué
d'un alliage d'uranium et de molybdène - 5 Bouclier constitué
d'hydrure de lithium et d'uranium appauvri - 6 Réflecteur à neutrons
en oxyde de béryllium (à gauche en position abaissée = le réacteur
n'est pas activé).

Il y a des sources neutroniques externes pour initier la réaction. La chaleur est évacuée pas des caloducs pour alimenter les moteurs Stirling (voir paragraphe suivant). La figure présente le réacteur qui a été testé en 2018.


La puissance thermique délivrée peut aller de 4 kW à 40 kW suivant le modèle.

4. Production électrique par thermocouples

Le principe est appelé effet Seebeck. En 1821, Thomas Johann Seebeck a découvert qu'un gradient thermique formé entre deux conducteurs dissemblables peut produire de l'électricité. L'effet thermoélectrique est dû au fait qu'un gradient de température dans un matériau conducteur entraîne un flux de chaleur ; cela entraîne la diffusion de porteurs de charge. Le flux de porteurs de charge entre les régions chaudes et froides crée à son tour une différence de tension. En 1834, Jean-Charles Peltier découvrit l'effet inverse, que le fonctionnement d'un courant électrique à travers la jonction de deux conducteurs différents pouvait, selon la direction du courant, le faire agir comme un réchauffeur ou un refroidisseur.

De nombreux matériaux sont utilisables pour les thermocouples. On peut citer le cas du thermocouple Fer/Cuivre (matériaux courants) mais on peut utiliser des matériaux beaucoup plus exotiques comme le SrTiO3 ou le Tellure.

L'utilisation est alors simple : on place les thermocouples entre la source chaude (nucléaire par exemple) et la source froide (dans l'espace un radiateur à ailettes) pour produire de l'électricité. La figure suivante montre le cas du générateur spatial utilisé pour la sonde Cassini.

Un circuit thermoélectrique composé de matériaux de différents coefficients Seebeck (souvent deux semi-conducteurss dopés p et n), configuré comme

Photo du générateur à ⁵ radioisotope de la sonde *Cassini*.

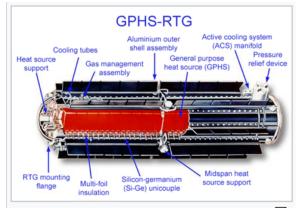


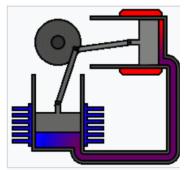
Schéma du GPHS-RTG des sondes *Ulysses*, *Galileo*, *Cassini-Huygens* et *New Horizons*.

Certains besoins militaires nécessitants le silence absolu peuvent également être alimentés par ce genre de systèmes.

Il est amusant de noter qu'on peut produire de l'électricité sur Terre avec un tel système et un simple poêle à bois même la nuit ce qui peut être plus pratique qu'un panneau solaire dans certains cas.

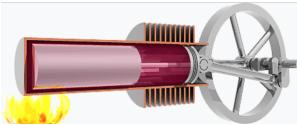
Malheureusement le rendement est assez faible, de l'ordre de 10%.

5. Production électrique par moteur Stirling


Le principe d'un moteur Stirling est le suivant :

Le fluide principal qui produit un travail est un gaz (air, hydrogène ou hélium...) soumis à un cycle comprenant quatre phases :

- 1. Chauffage isochore (à volume constant);
- 2. Détente isotherme (à température constante) : le gaz fournit du travail :
- 3. Refroidissement isochore;
- 4. Compression isotherme : le gaz reçoit du travail.


Le but est de produire de l'énergie mécanique à partir d'énergie thermique. Au début du cycle, le gaz à l'intérieur du moteur est placé dans la chambre chaude, chauffée par une source d'énergie : sa température et sa pression augmentent, ce qui produit une dilatation du gaz (phase 1). Le piston de la chambre chaude étant en butée, le gaz se détend vers la chambre froide en repoussant le piston de celle-ci. L'énergie thermique est ainsi

transformée en énergie mécanique qui est transmise à la roue (phase 2). Ce mouvement de la roue est transmis au piston de la chambre chaude qui repousse presque tout le gaz dans la chambre froide. Lorsque c'est fait, le gaz arrivé dans la chambre froide se refroidit (phase 3) et son volume diminue, entraînant le piston froid dans l'autre sens (phase 4). De nouveau, ce mouvement est transmis, via la roue, au piston de la chambre chaude qui recule alors vers sa butée. Presque tout le volume de gaz se retrouve alors aspiré vers la chambre chaude et le cycle

Modèle de moteur de type alpha.

La source chaude est du côté rouge ; la source froide est du côté bleu, entourée d'ailettes

Moteur Stirling type bêta

recommence. On nomme ce cycle thermodynamique le cycle de Stirling.

Il existe de nombreuses configurations de moteur Stirling ; chaque configuration cherchant à optimiser la captation de chaleur à la source chaude, la dissipation au niveau de la source froide, le gaz utilisé et la facilité de transfert du gaz d'une partie du système à l'autre. Le rendement de ce moteur peut être assez bon : il peut atteindre 30 %.

De nombreuses applications sont possibles, pas uniquement celle de cet article.

Le moteur Stirling étant réversible, s'il est couplé à un moteur externe, il peut produire du froid jusqu'à - 200 °C ou être une pompe à chaleur jusqu'à 700 °C.

6. Le projet Kilopower de la NASA

Pour les missions lointaines, la base lunaire ou les missions sur Mars la NASA a développé un générateur électrique baptisé Kilopower qui couple un réacteur de type Krusty avec des moteurs Stirling. La puissance électrique peut aller de 1 à 10 kW suivant le modèle (et malheureusement la masse de 400 kg à 1500 kg n'est pas négligeable).

7. Conclusion

On s'aperçoit que ces systèmes de production d'électricité pour le spatial sont d'une simplicité extrême mais d'une sophistication tout aussi importante. Leur production

Fig. 1. Layout for 1-kW(electric) Kilopower system.

d'électricité reste limitée et leur masse est toujours trop importante. Ces systèmes sont suffisants pour les sondes spatiales comme pour l'exploration de Titan, de la ceinture de Kuiper ou l'exploration de Chiron. Par contre pour envoyer des hommes sur Mars il faudra sans doute trouver des concepts permettant de fournir plus de puissance d'où le développement de microréacteurs nucléaires.